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Abstract. The relationship between net primary productivity (NPP) and forest age varies among forest species, yet there were 

no available NPP–age relationships established for various forest species in subtropical China for use in forest carbon modeling. 

This study explored the NPP–age relationships for seven forest species in subtropical China using data from the Strategic 

Priority Project of Carbon Budget (SPPCB), National Forest Inventory (NFI) Type I (NFI-I), and Type II (NFI-II) data using 

the Semi-Empirical Model (SEM). Forest species included Pinus massoniana (P. massoniana), Cunninghamia lanceolata (C. 15 

lanceolata), Eucalyptus robusta (Eucalyptus), Other Coniferous Forests (OCF), Softwood Broadleaf (SWB), Hardwood 

Broadleaf excluding Eucalyptus (HWB), and Mixed Forests (MF). Based on these three datasets, we were able to derive 

subtropical forest species-specific NPP–age relationships. Compared with China-wide NPP–age relationships previously 

derived from the SPPCB dataset, these species-specific relationships derived in this study resulted in improved simulations of 

aboveground biomass for subtropical forests using a process-based InTEC model, suggesting that these species-specific NPP–20 

age relationships are valuable for forest carbon modeling and management in subtropical China. 

1. Introduction 

Forests, recognized as one of Earth's largest carbon sinks, play a crucial role in mitigating climate change and regulating the 

global carbon cycle (Friedlingstein et al., 2020; Liu et al., 2012; Pan et al., 2011). Through the process of photosynthesis, 

forests absorb atmospheric carbon dioxide and convert it into organic carbon, thereby reducing greenhouse gas concentrations 25 

in the atmosphere (Fang et al., 2001; Chapin et al., 2006). Specifically, net primary productivity (NPP) serves as a key indicator 

of forest's carbon sequestration capacity, directly reflecting the biomass accumulation and carbon storage ability of forest 

ecosystems (Zha et al., 2013; Zhao and Zhou, 2005). NPP exhibits notable variations with forest age progression (Ben et al., 

2004; Wang et al., 2007, 2011). Typically, forest NPP follows a pattern of rapid growth during the early stages, peaking in the 

middle ages, and gradual decline at old ages (Yu et al., 2017; He et al., 2012). However, the NPP variation pattern with age 30 
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varies with forest species and climate conditions (Yu et al., 2017; Wang et al., 2018), highlighting the importance of 

understanding NPP–age relationships across various forest species and climate zones for accurate forest carbon modeling (Yu 

et al., 2017; Wang et al., 2018; Li et al., 2024b) and effective forest management and ecological restoration strategies 

(Luyssaert et al., 2008; Li et al., 2024a). 

China's subtropical region, characterized by a warm and humid climate, fertile soil, and rich biodiversity, is a vital 35 

component of global forest ecosystems (Zhou et al., 2014). This region contributes approximately 67.13% of China's terrestrial 

ecosystem carbon sequestration (Chen et al., 2019). The subtropical region boasts a diversity of forest types, including 

evergreen broad-leaved forests, coniferous forests, and mixed forests, with species such as Pinus massoniana (P. massoniana), 

Cunninghamia lanceolata (C. lanceolata), and Eucalyptus robusta (Eucalyptus) exhibiting unique ecological characteristics 

that influence the forest NPP–age relationships (Huang et al., 2010). In particular, evergreen broad-leaved and coniferous 40 

forests in this region play crucial roles in the forest carbon cycle. Therefore, exploring the NPP–age relationships for diverse 

forest species in subtropical China is essential for formulating regional forest management strategies. 

Currently, two sets of national-scale forest NPP–age curves have been established for China (Li et al., 2024a; Wang et al., 

2018). However, these NPP–age curves are constructed based on broad forest cover types such as coniferous forests, broad-

leaved forests, or mixed forests, without considering species-specific differences within the same forest type. This limits their 45 

application in simulating forest carbon sequestration at the stand-scale and species level. Preliminary research on the NPP–age 

relationship in subtropical China's forests has been conducted only in Zhejiang Province, distinguishing only between 

coniferous and broad-leaved forest types (Zheng et al., 2019). Although this study provides a preliminary understanding of the 

forest carbon cycle in subtropical regions, it fails to account for the diversity of forest types in subtropical areas, especially at 

the species level, limiting its applicability to national-scale subtropical forest carbon sequestration simulations.  50 

Moreover, constructing species-specific NPP–age curves faces inherent limitations due to insufficient field measurements 

or survey sample data. For example, field survey samples from the Strategic Priority Project of Carbon Budget (SPPCB) (Fang 

et al., 2018) and China’s National Forest Inventory (NFI) Type I (NFI-I) sample data (Lin et al., 2023) may not ensure an even 

distribution across different forest age classes. The lack of samples from old-age forest classes hinders the accurate depiction 

of NPP changes with forest age, leading to biases in carbon sequestration simulations for these classes. The NFI Type II (NFI-55 

II) stand data provides comprehensive coverage of all stands, complementing the insufficient representativeness of sample 

data, especially for old-age forest samples (Lin et al., 2023). However, NFI-II data typically represent the average conditions 

of the entire stand or dominant species, which may introduce biases in heterogeneous stands (Lin et al., 2023). Therefore, it is 

crucial to consider the representativeness of samples and the average values of NFI-II stand data, comprehensively assessing 

the impact of integrating NFI-II stand data on the construction of NPP–age curves to determine the optimal approach for 60 

constructing final curves. 

This study aims to explore forest NPP–age relationships for different forest species in subtropical China, with three 

objectives: (1) to comprehensively assess the impact of integrating NFI-II stand data on the construction of NPP–age curves; 

(2) to explore the NPP–age relationships of diverse forest species in subtropical China; and (3) to evaluate whether the forest 
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species-specific NPP–age relationships can improve forest aboveground biomass modeling. The resulting NPP–age curves 65 

will provide scientific support for estimating forest carbon sequestration and formulating forest management strategies in 

subtropical China, contributing to enhanced understanding and management of forest carbon dynamics in this region. 

2. Study Area, Data and Methods 

2.1. Study Area  

Fujian Province was selected as the study area (Fig. 1a) because of its highest forest coverage in China and data availability 70 

(Shang et al., 2025). It is located on the southeastern coast, ranging from 23°33′N to 28°20′N in latitude and from 115°50′E to 

120°40′E in longitude. The province is predominantly mountainous, with over 80% of its terrain comprising hills and 

mountains, ranging in elevation from approximately 1500 meters in the northwest to around 500 meters in the southeast. Fujian 

experiences a subtropical monsoon climate, characterized by mean annual temperatures ranging from 17°C to 21°C and annual 

precipitation between 1400 mm and 2000 mm. Fig. 1a shows the spatial distribution of the merged tree species. Three key tree 75 

species were selected for analyzing forest NPP in relation to age: Pinus massoniana (P. massoniana, 27.54% of the total studied 

forest species), Cunninghamia lanceolata (C. lanceolate, 23.35%), and Eucalyptus robusta Smith (shorten to Eucalyptus, 

4.14%). P. massoniana and C. lanceolata were chosen for their extensive distribution within Fujian Province (Lin et al., 2023). 

Eucalyptus, although representing a smaller proportion of the forest, was included due to its artificial continuity, rapid growth, 

high yield, and economic value (Zhou and Wingfield, 2011). The remaining tree species were merged into four groups: 80 

Hardwood Broadleaf excluding Eucalyptus (HWB, 26.45%), Softwood Broadleaf (SWB, 2.01%), Other Coniferous Forests 

except for P. massoniana and C. lanceolata (OCF, 2.44%), and Mixed Forests (MF, 14.07%). Bamboo species were not 

discussed in this study.  
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 85 
Figure 1: The distribution of forest species in Fujian Province (a) and the distribution of NFI-Ⅰ, NFI-Ⅱ, and SPPCB field survey 

samples (b). Different colours indicate different forest species, and the grey colour is for bamboo. P. massoniana: Pinus massoniana, C. 

lanceolata: Cunninghamia lanceolata, Eucalyptus: Eucalyptus robusta smith, HWB: Hardwood Broadleaf excluding Eucalyptus, SWB: 

Softwood Broadleaf, OCF: Other Coniferous Forests excluding P. massoniana and C. lanceolata, MF: Mixed Forests. 

2.2. Data 90 

Forest field data from China’s National Forest Inventory (NFI), comprising Type I point data (NFI-I) and Type II polygon data 

(NFI-II), along with SPPCB field survey samples (Fang et al., 2018), were used for building the forest NPP–age relationships. 

Fig. 1b shows the spatial distribution of the NFI-I, NFI-II, and SPPCB forest field samples, represented by different colors. 

The SPPCB field survey samples have previously been effectively used for constructing ten forest NPP–age relationships 

across China (Li et al., 2024a; Shang et al., 2023) and we only selected the 128 samples located in Fujian for the analysis. NFI-95 

I samples were obtained from China’s 8th (2009-2013) and 9th (2014-2018) National Forest Inventories. Each NFI-I sample 

records various attributes, including survey time and location, dominant tree species, forest height, diameter at breast height 

(DBH), forest stock volume, average forest age, and so on. After screening for different forest species, a total of 2,746 samples 

were retained for each period.  

Given the limited availability of NFI-I and SPPCB samples, these data might be insufficient to effectively constrain the 100 

NPP–age curve in older forest age ranges. Consequently, we incorporated NFI-II polygons into our analysis. These polygons 

were rasterized into 30 m spatial resolution pixels using the nearest neighbor resampling method, and all pixels within a forest 
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polygon shared the same attributes (Lin et al., 2023). The NFI-II samples were then created based on the dominance of tree 

species, requiring a proportion of 100% (with an adjustment to “higher than 80%” for C. equisetifolia and SWB due to their 

sample sizes) and the availability of relevant attribute records necessary for establishing forest NPP–age relationships (Lin et 105 

al., 2023). To ensure sample homogeneity and confirm that each sample is positioned at the center of the forest polygon, all 

adjacent 11×11 pixels were required to meet both criteria (Lin et al., 2023). Finally, NFI-II samples with ages greater than 

those in the NFI-I and SPPCB datasets (Fig. 1b and Fig. 2) were used to construct the forest NPP–age relationships. 

 

 110 
Figure 2: Age distributions of tree species and species groups based on original NFI-I, NFI-II data, and SPPCB field survey samples 

in Fujian Province. P. massoniana: Pinus massoniana, C. lanceolata: Cunninghamia lanceolata, Eucalyptus: Eucalyptus robusta smith, 

HWB: Hardwood Broadleaf excluding Eucalyptus, SWB: Softwood Broadleaf, OCF: Other Coniferous Forests except for P. massoniana 

and C. lanceolata, MF: Mixed Forest. 
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2.3. Methods 115 

2.3.1. Building NPP–age relationships for different forest species 

The forest NPP was calculated from the three types of forest field samples, and it consisted of four components: total biomass 

increment, mortality, foliage turnovers, and fine root turnovers in the soil (Chen et al., 2002; He et al., 2012; Xia et al., 2019; 

Li et al., 2024a):  

𝑁𝑃𝑃 =  𝑑𝐵𝑐 + 𝑀 + 𝐿𝑓 + 𝐿𝑓𝑟                                                                                                                                                              （1） 120 

where 𝑑𝐵𝑐 is the annual increment of total living biomass (including stems, branches, and coarse roots); 𝑀 is mortality 

ignored in this study due to a lack of observations at the ground plots and its small proportion to NPP (Li et al., 2024a); 𝐿𝑙 is 

the turnover of leaves per year; and 𝐿𝑓𝑟  is the turnover of fine roots per year in the soil. 

The annual increment of total living biomass was calculated from the annual biomass change (𝑑𝐵) and the ratio of carbon 

content (Li et al., 2011; White et al., 2000; Wu et al, 2016; Xia et al., 2019): 125 

𝑑𝐵𝑐 = 𝑑𝐵 × 𝑐                                                                                                                                                                                        （2） 

where 𝑑𝐵 is the annual biomass change and 𝑐 is the carbon content in biomass. Biomass was not directly provided in the 

NFI-I and NFI-II samples, but it could be calculated from the forest volume (V) using species-specific biomass regression 

equations. The coefficients for these regression equations are presented in Table 1 (Li et al., 2011; Wu et al., 2016). 

The turnovers of leaves and fine roots per year in the soil could be calculated as follows (Chen et al., 2002; He et al., 2012; 130 

Li et al., 2024a): 

𝐿𝑙 =
𝐿𝐴𝐼

𝑆𝐿𝐴
× 𝑡𝑙 × 𝑐                                                                                                                                                                                 （3） 

𝐿𝑓𝑟 = 𝑅𝑓𝑟,𝑙 × 𝐿𝑙                                                                                                                                                                                      （4） 

where 𝐿𝐴𝐼 is the leaf area index (LAI), 𝑆𝐿𝐴 is the specific leaf area, 𝑡𝑙 is the foliage turnover ratio, and 𝑅𝑓𝑟,𝑙 represents 

the ratio of carbon allocated to new fine roots to carbon in new leaves. The detailed values for the coefficients of 𝑆𝐿𝐴, 𝑡𝑙, and 135 

𝑅𝑓𝑟,𝑙 for different forest species were provided in Table 2 ( Li et al., 2024a; Li et al., 2007; White et al., 2000; Xie et al., 2022; 

Zhou et al., 2008). The LAI values were derived from the GLOBMAP Version 3 LAI product (Liu et al., 2012). 

The semi-empirical mathematical (SEM) function (Chen et al., 2003; He et al., 2012; Li et al., 2024a) was used to build the 

forest NPP–age relationships for different forest species based on the calculated forest field NPP, as it was demonstrated as 

the optimal method for building NPP–age curves in China (Li et al., 2024a): 140 

𝑁𝑃𝑃(𝑥) = 𝑎[1 + (𝑏(𝑥 𝑐⁄ )𝑑 − 1) 𝑒(𝑥 𝑐⁄ )⁄ ]                                                                                                                                      （5） 
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where 𝑁𝑃𝑃(𝑥) is NPP at the age of 𝑥, and a, b, c, and d are the coefficients of the SEM function. The uncertainty analysis 

of the built NPP–age relationships was conducted using the same method in the research of Li et al., (2024a).  

Table 1: The coefficients of the species-specific biomass regression equations (Li et al., 2011; Wu et al., 2016). B: Biomass; V: Volume. 

P. massoniana: Pinus massoniana, C. lanceolata: Cunninghamia lanceolata, Eucalyptus: Eucalyptus robusta smith, HWB: Hardwood 145 
Broadleaf excluding Eucalyptus, SWB: Softwood Broadleaf, OCF: Other Coniferous Forests except for P. massoniana and C. lanceolata, 

MF: Mixed Forests. 

Forest species Biomass regression equation (t·hm-2) Carbon content (%) 

C. lanceolata B = 0.3999V + 22.5410 51.27 

P. massoniana B = 0.52V 52.71 

OCF B = 0.4631V + 24.2777 51.68 

Eucalyptus B = 0.7893V + 6.9306 47.48 

HWB B = 0.6255V + 91.0013 49.01 

SWB B = 0.4754V + 30.6034 45.02 

MF B = 0.8019V + 12.2799 48.93 

Table 2: The input coefficients in the calculation of forest field NPP for different forest species. 𝑺𝑳𝑨 is the specific leaf area; 𝒕𝒍 is the 

foliage turnover ratio; 𝑹𝒇𝒓,𝒍 is the ratio of NPP to fine roots and leaves. P. massoniana: Pinus massoniana, C. lanceolata: Cunninghamia 

lanceolata, Eucalyptus: Eucalyptus robusta smith, HWB: Other hardwood broadleaf excluding Eucalyptus, SWB: Softwood broadleaf, OCF: 150 
Other coniferous mixed forests excluding P. massoniana and C. lanceolata, MF: Mixed forest. 

Forest Type 𝑺𝑳𝑨 (m2 kg C-1) 𝒕𝒍 (year-1) 𝑹𝒇𝒓,𝒍 (kg C kg C-1) 

C. lanceolata 7.9 0.22 1.4 

 P. massoniana 6.7 0.26 1.4 

OCF 8.2 0.26 1.4 

Eucalyptus 26.3 0.86 1.2 

HWB/SWB 32 0.86 1.2 

MF 21.1 0.56 1.3 

2.3.2. Forest carbon modeling using the newly built NPP–age relationships 

The NPP–age relationships constructed for different forest species were integrated into the Integrated Terrestrial Ecosystem 

Carbon Cycle (InTEC) model for forest carbon modeling. To evaluate whether the forest species-specific NPP–age 

relationships can improve forest carbon modeling, the forest carbon modeling using the newly built NPP–age relationships 155 

was compared with that of using the China-wide NPP–age relationships (Shang et al., 2023; Li et al., 2024a). The InTEC 

model integrates multiple processes, including leaf photosynthesis (using the Farquhar biochemical model), soil carbon and 

nitrogen cycling, net nitrogen mineralization, and NPP–age relationships (Chen et al., 2000a, b). This model estimates forest 

carbon balance by accounting for atmospheric, climatic, and biological changes since the pre-industrial era. The impact of 

climate change on photosynthesis is modeled through changes in the growing season length and photosynthetic rate, while 160 

elevated CO2 concentrations and leaf nitrogen content positively affect photosynthesis. Model inputs include spatially 

distributed data on climate, soil texture, nitrogen deposition, and vegetation parameters derived from remote sensing (Table 
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3). Since carbon flux measurements were not available in Fujian province, the performance of forest carbon modeling was 

indirectly validated by comparing the modeled aboveground biomass with the calculated aboveground biomass from forest 

field surveys or inventory data. The aboveground biomass was modeled at a spatial resolution of 30 meters from 1901 to 2023, 165 

and the period from 1901 to 1985 was used for the spin-up of the initial model parameters. 

Table 3: Main Input Data of the InTEC Model. LAI: Leaf area index; BEPS: Boreal Ecosystem Productivity Simulator model; DEM: 

Digital elevation model. 

Input data Unit  
Spatial 

resolution 

Temporal 

resolution 
Data source     

Climate data 

Precipitation   mm 

0.5° 1901-2023 CRU TS 4.08 
Temperature  ℃ 

Vapor pressure hpa 

Cloud amount % 

Atmospheric 

composition data 

CO2 concentration mol mol-1 Site scale 1960-2021 Mauna Loa 

Nitrogen deposition 10*gN m-2yr-1 1.27°×2.5° 1997-2013 
(Gao et al., 

2020) 

Vegetation data 

Forest cover types / 30m / NFI-II 

LAI m2 /m2 500m 2015 
GLOBMAP 

LAI V3 

Forest age year 30m 2015 NFI-II 

Reference NPP 10 gC m-2 yr-1 30m 2015 BEPS 

NPP-age relationship 

curves 
/ / / This study 

Soil data 

Sand content % 0.0083° / 
HDSW World 

Soil Database 
Clay content % 0.0083° / 

Soil depth 100 m 0.0083° / 

Topographic 

data 

Latitude/longitude degree 30m / / 

DEM m 30m / 
http://www.gsc

loud.cn 

Slope and aspect / 30m / 

Calculated 

from DEM 

Topographic wetness 

index 
/ 30m / 

Water table depth m 30m / 

3. Results 

3.1. Comparisons of forest NPP–age relationships constructed with and without NFI-II samples 170 

The NPP–age relationships constructed with and without NFI-II samples using the SEM function were compared in Fig. 3. 

This comparison was motivated by two considerations: (i) NFI-I and SPPCB samples alone may not provide sufficient data to 
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reliably constrain NPP–age curves for old forests and (ii) NFI-II samples, derived from NFI-II polygons, may introduce 

inherent uncertainties. In Fig. 3, the green and red lines depict the forest NPP–age curves with and without using NFI-II 

samples, respectively. Solid lines indicate the forest age ranges where field data are available, while dashed lines represent 175 

extrapolated curves beyond the field sample age range. Their curve-fitting performances were also quantitatively assessed 

using R² and RMSE, as shown in Fig. 4. 

The peak NPP age, a critical indicator of the NPP–age relationship, remained consistent for Eucalyptus, P. massoniana, C. 

lanceolata, OCF, and MF, regardless of whether NFI-II samples were included, while only a one-year difference was observed 

for HWB and SWB. Notably, without using NFI-II samples, NPP values for C. lanceolata and SWB dropped close to zero in 180 

ages older than 150 years, suggesting a transition from forest carbon sinks to carbon sources in old ages. This finding contrasts 

with previous studies, which suggest that older forests continue to act as carbon sinks (Gundersen et al., 2021; Luyssaert et al., 

2008). For Eucalyptus, the NPP reduction exceeded 70% without NFI-II samples, diverging significantly from previous studies 

that generally report reductions by about one-third (Luyssaert et al., 2008; Wang et al., 2011) or half (Ryan et al., 2004; Mund 

et al., 2002) of peak NPP. These discrepancies highlight the importance of including NFI-II samples for accurately modeling 185 

the NPP–age relationships for Eucalyptus, C. lanceolata, and SWB.  

For P. massoniana, HWB, OCF, and MF, the inclusion of NFI-II samples had minimal effects on the overall pattern of the 

NPP–age curves. When NFI-II samples were included, R² slightly decreased by less than 0.025 for P. massoniana, HWB, and 

OCF, but slightly increased by 0.003 for MF. Similarly, RMSE values showed a minor increase (under 2 gC m-2 year-1) for P. 

massoniana and OCF, while a slight decrease (under 7 gC m-2 year-1) for HWB and MF. Therefore, we ultimately opted to 190 

consistently use NFI-II samples in constructing the NPP–age curves, as incorporating NFI-II samples can extend the age range 

over which the curves are constrained, thus enhancing the data coverage and consistency. 
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Figure 3: NPP–age curves fitted by the SEM function for different forest species with and without using NFI-II samples. The red and 195 
blue circles, with associated grey error bars, represent the average NPP values and their one standard deviation. The green and red lines 

depict the built forest NPP–age curves with and without using NFI-II samples. Solid lines indicate the forest age ranges where field data are 

available, while dashed lines represent extrapolated curves beyond the maximum age of the field samples. P. massoniana: Pinus massoniana, 

C. lanceolata: Cunninghamia lanceolata, Eucalyptus: Eucalyptus robusta smith, HWB: Hardwood Broadleaf excluding Eucalyptus, SWB: 

Softwood Broadleaf, OCF: Other Coniferous Forests except for P. massoniana and C. lanceolata, MF: Mixed Forest. 200 
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Figure 4: R² and RMSE of the built NPP–age curves for different forest species with and without NFI-II samples. P. massoniana: 

Pinus massoniana, C. lanceolata: Cunninghamia lanceolata, Eucalyptus: Eucalyptus robusta smith, HWB: Hardwood Broadleaf excluding 

Eucalyptus, SWB: Softwood Broadleaf, OCF: Other Coniferous Forests except for P. massoniana and C. lanceolata, MF: Mixed Forest. 205 

3.2. Characterization of forest NPP–age curves among different forest species 

The final forest NPP–age curves were built with the SEM function using the SPPCB, NFI-I, and NFI-II samples for different 

forest species, with model coefficients provided in Table 4. Fig. 5 shows the standardized NPP–age curves of the seven forest 

species and species groups. Solid lines indicate the age range supported by field data (the triangle in each line indicates the 

maximum age), while dashed lines indicate predicted values beyond this range using the SEM function. The NPP–age patterns 210 

were generally consistent across all species, with NPP increasing during young stages, peaking in a middle age, and then 

declining and stabilizing in old ages (Li et al., 2024a; He et al., 2012; Yu et al., 2017; Zheng et al., 2019; Wang et al., 2018, 

2011). But there were also variations in the timing of peak NPP, as well as differences in the rate of decline in older age stages. 

Specifically, the peak NPP ages for Eucalyptus, P. massoniana, C. lanceolata, SWB, HWB, OCF, and MF were identified as 

9, 32, 25, 22, 37, 24, and 30 years, respectively. The ratios of stabilized NPP in old ages to the maximum NPP (stabilized-to-215 

peak NPP ratios) were 59.1%, 57.3%, 65.5%, 56.8%, 59.5%, 56.0%, and 57.9%, respectively. These values align with previous 

studies, which typically report reductions by approximately one-third (Luyssaert et al., 2008; Wang et al., 2011) or half (Ryan 

et al., 2004; Mund et al., 2002) from the peak NPP. 

Broadleaf species such as HWB and SWB demonstrated later peak NPP ages and lower stabilized-to-peak NPP ratios 

compared to conifer species like C. lanceolata, P. massoniana, and OCF. The higher wood density and longer lifespans of 220 

broadleaf species allow them to sustain productivity and carbon absorption over an extended period (Xu et al., 2024), while 

conifer species, despite their rapid early growth and carbon fixation, show earlier and steeper declines, reflecting differences 

in their ecological and physiological strategies (Bigler and Veblen, 2009). HWB exhibited a later peak NPP age and lower 
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stabilized-to-peak NPP ratio compared to SWB. This can be explained by the fact that hardwood species maintain stronger 

carbon absorption during later growth stages due to their higher wood density and longer lifespans (Citations). In contrast, 225 

softwood species excel in rapid carbon sequestration during early stages but experience earlier and more significant 

productivity declines (Citations). Compared to C. lanceolate, P. massoniana shows a later peak NPP age and higher stabilized-

to-peak NPP ratio, as P. massoniana supports prolonged carbon sequestration (Justine et al., 2017; Bai and Ding, 2024), while 

C. lanceolata prioritizes rapid early growth (Zhou et al., 2016).  

The NPP–age curve for Eucalyptus forests exhibits a relatively low peak NPP age of 9 years compared to other forest species. 230 

This early peak age underscores the species' ability to achieve significant productivity at a young age, making it well-suited 

for fast-growing timber plantations (Zhang et al., 2023; Qin and Shangguan, 2019). While this early productivity surge is 

advantageous for short-rotation forestry, it often leads to a shortened early life cycle, causing a noticeable reduction in 

productivity soon after reaching peak levels (Zhang et al., 2023; Zhou and Wingfield, 2011). 

Table 4: Coefficients of Fujian Province's plantation NPP–age curves were computed using the SEM function. a-d: the model 235 
coefficients. P. massoniana: Pinus massoniana, C. lanceolata: Cunninghamia lanceolata, Eucalyptus: Eucalyptus robusta smith, HWB: 

Hardwood Broadleaf excluding Eucalyptus, SWB: Softwood Broadleaf, OCF: Other Coniferous Forests except for P. massoniana and C. 

lanceolata, MF: Mixed Forest. 

Tree species 
Parameters 

𝒂 𝒃 𝒄 𝒅 

C. lanceolata 470.8 1.894 13.78 1.353 

P. massoniana 415.3 0.132 7.61 4.136 

OCF 422 1.325 9.697 2.267 

Eucalyptus 484 1.225 3.664 2.226 

HWB 507.2 1.132 14.38 2.316 

SWB 468 0.532 6.847 3.104 

MF 444.2 1.246 12.11 2.26 
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 240 
Figure 5: The normalized NPP–age curves built from the SEM function. The solid lines are for the age period with field data (the triangle 

in each line indicates the largest age with the field data), and the dashed lines are for the age period without field data. P. massoniana: Pinus 

massoniana, C. lanceolata: Cunninghamia lanceolata, Eucalyptus: Eucalyptus robusta smith, HWB: Hardwood Broadleaf excluding 

Eucalyptus, SWB: Softwood Broadleaf, OCF: Other Coniferous Forests except for P. massoniana and C. lanceolata, MF: Mixed Forest. 

3.3. Comparison to the forest NPP–age curves built previously 245 

The normalized NPP–age curves built for seven forest species and species groups (referred to as species-specific curves) in 

Fujian province were compared with three previously built NPP–age curves for entire China (shortened to as China-wide 

curves) (Fig. 6). In general, the species-specific NPP–age curves constructed exhibit earlier peak ages and faster decline in old 

ages, particularly for Eucalyptus, C. lanceolate, OCF, and SWB.  

The peak NPP age for Eucalyptus is 9 years, much smaller than that from the China-wide NPP–age curve. But it aligns with 250 

the reported rapid growth and significant productivity of Eucalyptus at young ages (Zhang et al., 2023; Qin and Shangguan, 

2019). The peak NPP age for P. massoniana in Fujian Province is 32 years, which agrees well with the 34 years of ENF in 

southern China (Li et al., 2024a). While C. lanceolata peaks at 25 years, earlier than ENF in southern China, but close to the 

23 years found for coniferous forests in Zhejiang Province (Zheng et al., 2019). Other coniferous forests except for P. 

massoniana and C. lanceolate have peak NPP ages of 24 years, similar to coniferous forests in Zhejiang (Zheng et al., 2019). 255 

These relatively early peak ages indicate their efficient photosynthesis and resource utilization during the early growth stages 

(Lu et al., 2015; Huang et al., 2007).  

The peak NPP age of HWB is 37 years, similar to that of EBF in southern and eastern China, which peaks at 30 to 40 years 

(Li et al., 2024a; Wang et al., 2011). In contrast, the NPP of SWB peaks at 22 years, which is relatively early compared to 

HWB. Soft broadleaf species generally prioritize rapid early growth in response to favorable environmental conditions (Fujita 260 
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et al., 2012). Among broadleaf species, Eucalyptus exhibits the earliest peak NPP of 9 years, making it highly suitable for 

short-rotation forestry, but sharp post-peak declines limit its long-term carbon storage potential. The peak NPP age of MF in 

Fujian is 30 years, which is similar to that of mixed forests in the south and southwest of China ( Li et al., 2024a) and close to 

the 32 years of peak NPP age for MBF in central China (Wang et al., 2011). Mixed forests combine the fast growth of broadleaf 

species with the longevity of conifers, achieving a balance in productivity across growth stages. Their diverse composition 265 

enhances resource utilization efficiency and reduces competition, allowing for sustained and stable carbon absorption (Xu et 

al., 2024). 

 

Figure 6: Comparison between the species-specific and China-wide normalized forest NPP–age curves. P. massoniana: Pinus 

massoniana, C. lanceolata: Cunninghamia lanceolata, Eucalyptus: Eucalyptus robusta smith, HWB: Hardwood Broadleaf excluding 270 
Eucalyptus, SWB: Softwood Broadleaf, OCF: Other Coniferous Forests except for P. massoniana and C. lanceolata, MF: Mixed Forest. 
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3.4. Forest biomass modeling using the species-specific NPP–age curves 

The built species-specific NPP–age curves were incorporated into the InTEC model for forest biomass modeling. But due to 

the lack of field soil carbon data for validation, we primarily focused on validating the modeled forest above-ground wood 

biomass (AGB). We compared the simulated AGB obtained by using the newly constructed species-specific NPP–age curves 275 

with that obtained by using the previously built nationwide NPP–age curves (Fig.7). Overall, the species-specific NPP–age 

curves significantly outperformed the nationwide curves in simulating AGB accuracy. 

For coniferous forests, the nationwide NPP–age curve tended to overestimate AGB for ages ranging between 40 and 120 

years. In contrast, the species-specific curves declined more rapidly after the peak NPP year. This might be closely related to 

the mechanism through which the subtropical warm and humid environment accelerates plant physiological aging (Chen et al., 280 

2024). When using species-specific curves, the accuracy of simulating AGB for C. lanceolata was slightly higher, while for 

both C. lanceolata and OCF, the accuracy was significantly improved, with an average reduction in RMSE ranging from 9.4 

to 14.4 Mg/ha. For Eucalyptus and SWB in broadleaf forests, the nationwide curve overestimated AGB for trees older than 

their peak NPP age but underestimated it for Eucalyptus younger than 20 years. The accuracy of simulating AGB for HWB 

based on species-specific curves was slightly enhanced, but for Eucalyptus and SWB, it was significantly improved, with an 285 

average increase in R² greater than 0.3 and a decrease in RMSE exceeding 18.5 Mg/ha. Similarly, the accuracy for MF was 

also enhanced, with an average RMSE reduction of 7.56 Mg/ha. Overall, the larger the differences between species-specific 

and nationwide NPP-age relationships (Fig. 6), the larger improvements are found in simulated AGB values (Fig. 7).  

These results demonstrate that the newly developed species-specific NPP–age curves significantly enhance the accuracy of 

AGB simulations in the InTEC model for subtropical forests, particularly for early-maturing species such as Eucalyptus, by 290 

capturing regional-specific growth strategies. Notably, the improvement in simulation accuracy varied across different age 

classes, highlighting the importance of considering age dynamics in forest carbon sink modeling and predictions. 
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Figure 7: Validation and comparison of the simulated aboveground wood biomass by using the species-specific and China-wide forest NPP–

age curves. P. massoniana: Pinus massoniana, C. lanceolata: Cunninghamia lanceolata, Eucalyptus: Eucalyptus robusta smith, HWB: 295 
Hardwood Broadleaf excluding Eucalyptus, SWB: Softwood Broadleaf, OCF: Other Coniferous Forests except for P. massoniana and C. 

lanceolata, MF: Mixed Forest. 

4. Discussions 

This study established NPP–age relationships for seven forest species and species groups in Fujian Province based on field 

survey data from NFI-I, NFI-II, and SPPCB using the SEM model. It also evaluated whether the species-specific NPP–age 300 
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relationships can improve forest biomass modelling using the InTEC model. Since NFI-I and SPPCB samples alone do not 

provide adequate data for old forests, and NFI-II samples introduces inherent uncertainties, we compared NPP–age 

relationships constructed with and without NFI-II samples. Results showed that incorporating NFI-II samples was crucial for 

accurately modeling NPP–age relationships for Eucalyptus, C. lanceolata, and SWB, but had minimal impacts on P. 

massoniana, HWB, OCF, and MF. Nevertheless, NFI-II helped extend the data range to older ages. The constructed species-305 

specific NPP–age relationships all three available datasets were shown to improve modelled biomass in subtropical China, 

highlighting the importance of species-specific parameterization in forest biomass modeling. The resulting NPP–age curves 

will provide scientific support for accurate estimation of forest carbon sequestration and the formulation of forest management 

strategies in subtropical China (Li et al., 2024c), contributing to enhanced understanding and management of forest carbon 

dynamics in this region with the largest sinks in China. 310 

There were several limitations. Firstly, inherent inconsistencies may arise among the three field data sets, particularly 

notable discrepancies between the NFI-II stand data and the SPPCB and NFI-I sample data. The NFI-I and SPPCB field 

samples may lack sufficient representation within the old age classes of forests (Fig. 2), potentially leading to unconstrained 

NPP–age curves for certain tree species in old ages, which may exhibit an unreasonably declining trend and a transition from 

forest carbon sinks to carbon sources, i.e. NPP declines to values close to zero (Fig. 3). To strengthen the constraint on the 315 

curves for the old age classes, this study incorporated NFI-II stand data by converting stand attributes into point samples. 

However, for stands characterized by high heterogeneity, deviations may still occur despite efforts to mitigate this effect 

through screening based on the dominance of tree species (Lin et al., 2023). To visually indicate the data constraint on the 

constructed NPP–age curves, solid lines were used to denote the curve portions supported by field data, while dashed lines 

were employed for the curve portions lacking field data. In future studies, collecting more field data on old forests will facilitate 320 

determining the shape of the forest NPP–age curves at older ages. 

Second, this study did not account for the difference of planted forests and natural forests on the NPP–age relationships, nor 

the impact of forest managements such as selective logging and shelterwood cutting. Eucalyptus in plantations often grows 

rapidly due to intensive management, but this can lead to ecosystem degradation, such as soil erosion and reduced biodiversity. 

In contrast, Eucalyptus in natural forests grows more slowly but supports a more stable ecosystem (Ying et al., 2010). P. 325 

massoniana and C. lanceolata in natural forests exhibit higher ecosystem complexity and biodiversity, which results in slower 

growth rates but longer growth cycles with higher NPP (Liu et al., 2014). The timing of selective cutting and shelterwood 

cutting also significantly affects forest growth. Properly timed logging practices can promote tree health, growth, and resource 

renewal, while mistimed logging can negatively impact growth rates and wood quality (Wu et al., 2018). Due to the lack of 

data, this study did not distinguish between planted and natural forests and did not consider the impact of forest management. 330 

Future research may be directed towards acquiring comprehensive data to better understand the growth differences between 

planted forests and natural forests and the influence of forest managements on forest NPP–age relationships. 

Third, the input coefficients for specific leaf area, foliage turnover ratio, and the ratios of the turnovers of fine roots and 

leaves to NPP used in calculating forest field NPP for diverse forest species may introduce uncertainties into the forest NPP–
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age relationships. Currently, these coefficients are primarily sourced from literature (Li et al., 2024a; Li et al., 2007; White et 335 

al., 2000; Xie et al., 2022; Zhou et al., 2008), with data originating from subtropical provinces in China such as Guangxi (Xie 

et al., 2022), Jiangxi (Li et al., 2007), and Guiyang (Zhou et al., 2011), as well as from other regions (White et al., 2000). Data 

from these regions may differ from those in subtropical China, potentially leading to biases in the calculation of forest field 

NPP and final built NPP–age curves. Therefore, future studies should also emphasize local field measurements of these input 

coefficients to improve the accuracy of the NPP–age relationship and more precisely ascertain the carbon sequestration 340 

capacity of different tree species at various ages. 

Last, there were also other factors that could influence the forest NPP–age relationships, such as the site conditions and soil 

fertility (Li et al., 2024a). Under favorable site conditions, forests typically exhibit faster NPP growth during their early stages, 

attain higher peak NPP values, and undergo steeper declines in NPP as they age (Wang et al., 2018; Yu et al., 2017). Conversely, 

forests with poor soil fertility tend to exhibit slower NPP growth in their early stages, achieve lower peak NPP values, and 345 

undergo less dramatic declines in NPP as they mature. Notably, the rapid replacement of natural broadleaf forests with 

plantations dominated by species such as P. massoniana and C. lanceolata in subtropical regions has significantly reduced soil 

fertility (Ming et al., 2019; Ni et al., 2021; Li et al., 2023). Therefore, in future research endeavors, it is imperative to consider 

site conditions and soil fertility to improve the construction of forest NPP–age curves. 

5. Conclusions 350 

This study investigated the NPP–age relationships for seven forest species and species groups in subtropical China, leveraging 

the extensive datasets from the SPPCB, NFI-I, and NFI-II forest field surveys along with the SEM function. Forest species 

examined encompassed P. massoniana, C. lanceolata, Eucalyptus, OCF, SWB, HWB, and MF. Given that the NFI-I and 

SPPCB samples alone might not adequately represent old forests, while the NFI-II samples offer comprehensive coverage 

across all stands but could potentially introduce inherent uncertainties, we conducted a comparative analysis of the NPP–age 355 

curves with and without the inclusion of NFI-II samples. Results showed that incorporating NFI-II samples was crucial for 

accurately modeling NPP–age relationships for Eucalyptus, C. lanceolata, and SWB, but had minimal impacts on P. 

massoniana, HWB, OCF, and MF. Therefore, we incorporated NFI-II samples in constructing the species-specific NPP–age 

curves to enhance the data coverage and consistency. Significant differences are found between the species-specific and nation-

wide NPP-age relationships in both NPP peak age and the ratio of stabilized NPP at old ages to the peak NPP, suggesting 360 

dependence of the relationships on forest species and climate.   

The built species-specific NPP–age curves were subsequently incorporated into the InTEC model for forest biomass 

modeling, and results demonstrate that the newly established species-specific curves significantly improved the accuracy of 

Above-Ground Biomass (AGB) simulations in the InTEC model for subtropical forests, particularly for early-maturing species 

such as Eucalyptus. Notably, the enhancement in simulation accuracy varied across different age classes, underscoring the 365 

significance of considering age dynamics in forest carbon sink modeling and predictions. These species-specific NPP–age 
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curves will serve as a fundamental basis for reliable forest carbon modeling and effective forest management in subtropical 

China.  

Code availability 

The codes for building the forest NPP–age relationships are available upon request from the corresponding authors. 370 

Data availability 

The coefficients of the built forest NPP–age relationships are available in Table 4. 
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